Complex Portfolio Optimization with PortfolioAnalytics

R/Finance 2014

Ross Bennett
Overview

- Discuss Portfolio Optimization
- Introduce PortfolioAnalytics
- Demonstrate PortfolioAnalytics with Examples
Modern Portfolio Theory

"Modern" Portfolio Theory (MPT) was introduced by Harry Markowitz in 1952.

In general, MPT states that an investor's objective is to maximize portfolio expected return for a given amount of risk.

General Objectives

- Maximize a measure of gain per unit measure of risk
- Minimize a measure of risk

How do we define risk? What about more complex objectives and constraints?
Portfolio Optimization Objectives

- Minimize Risk
 - Volatility
 - Tail Loss (VaR, ES)
 - Other Downside Risk Measure
- Maximize Risk Adjusted Return
 - Sharpe Ratio, Modified Sharpe Ratio
 - Several Others
- Risk Budgets
 - Equal Component Contribution to Risk (i.e. Risk Parity)
 - Limits on Component Contribution
- Maximize a Utility Function
 - Quadratic, CRRA, etc.
PortfolioAnalytics Overview

PortfolioAnalytics is an R package designed to provide numerical solutions and visualizations for portfolio optimization problems with complex constraints and objectives.

- Support for multiple constraint and objective types
- An objective function can be any valid R function
- Modular constraints and objectives
- Support for user defined moment functions
- Visualizations
- Solver agnostic
- Support for parallel computing
Support Multiple Solvers

Linear and Quadratic Programming Solvers

- R Optimization Infrastructure (ROI)
 - GLPK (Rglpk)
 - Symphony (Rsymphony)
 - Quadprog (quadprog)

Global (stochastic or continuous solvers)

- Random Portfolios
- Differential Evolution (DEoptim)
- Particle Swarm Optimization (pso)
- Generalized Simulated Annealing (GenSA)
Random Portfolios

PortfolioAnalytics has three methods to generate random portfolios.

1. The sample method to generate random portfolios is based on an idea by Pat Burns.
2. The simplex method to generate random portfolios is based on a paper by W. T. Shaw.
3. The grid method to generate random portfolios is based on the `gridSearch` function in the NMOF package.
Comparison of Random Portfolio Methods

Random Portfolio Methods

![Graph comparing different methods for random portfolio selection. The graph shows the relationship between mean and standard deviation for various methods such as 'sample', 'simplex', and 'grid'.]
Comparison of Random Portfolio Methods (Interactive!)

<table>
<thead>
<tr>
<th>Risk (std. dev.)</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0082</td>
<td>0.0048</td>
</tr>
<tr>
<td>0.0084</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.0086</td>
<td>0.0052</td>
</tr>
<tr>
<td>0.0088</td>
<td>0.0054</td>
</tr>
<tr>
<td>0.0090</td>
<td>0.0056</td>
</tr>
<tr>
<td>0.0092</td>
<td>0.0058</td>
</tr>
<tr>
<td>0.0094</td>
<td>0.0060</td>
</tr>
<tr>
<td>0.0096</td>
<td>0.0062</td>
</tr>
<tr>
<td>0.0098</td>
<td>0.0064</td>
</tr>
<tr>
<td>0.0100</td>
<td>0.0066</td>
</tr>
<tr>
<td>0.0102</td>
<td>0.0068</td>
</tr>
<tr>
<td>0.0104</td>
<td>0.0070</td>
</tr>
<tr>
<td>0.0106</td>
<td>0.0072</td>
</tr>
<tr>
<td>0.0108</td>
<td>0.0074</td>
</tr>
<tr>
<td>0.0110</td>
<td>0.0076</td>
</tr>
</tbody>
</table>

The diagram shows the comparison of different methods for random portfolio selection, with the axes representing risk (std. dev.) on the x-axis and return on the y-axis. The methods compared include sample, simplex, and grid.
Random Portfolios: Simplex Method
Workflow: Specify Portfolio

args(portfolio.spec)

```r
## function (assets = NULL, category_labels = NULL, weight_seq = NULL,
##     message = FALSE)
## NULL
```

Initializes the portfolio object that holds portfolio level data, constraints, and objectives.
Workflow: Add Constraints

```r
args(add.constraint)
```

```r
## function (portfolio, type, enabled = TRUE, message = FALSE, ..., 
##     indexnum = NULL)
## NULL
```

Supported Constraint Types

- Sum of Weights
- Box
- Group
- Factor Exposure
- Position Limit
- and many more
Workflow: Add Objectives

```r
args(add.objective)
```

```
## function (portfolio, constraints = NULL, type, name, arguments = NULL,
## enabled = TRUE, ..., indexnum = NULL)
## NULL
```

Supported Objective types

- Return
- Risk
- Risk Budget
- Weight Concentration
Workflow: Run Optimization

```r
args(optimize.portfolio)
```

```r
## function (R, portfolio = NULL, constraints = NULL, objectives = NULL,
##     optimize_method = c("DEoptim", "random", "ROI", "psdo", "GenSA"),
##     search_size = 20000, trace = FALSE, ..., rp = NULL, momentFUN = "set.portfolio.moments",
##     message = FALSE)
## NULL
```

```r
args(optimize.portfolio.rebalancing)
```

```r
## function (R, portfolio = NULL, constraints = NULL, objectives = NULL,
##     optimize_method = c("DEoptim", "random", "ROI"), search_size = 20000,
##     trace = FALSE, ..., rp = NULL, rebalance_on = NULL, training_period = NULL,
##     trailing_periods = NULL)
## NULL
```
Workflow: Analyze Results

<table>
<thead>
<tr>
<th>VISUALIZATION</th>
<th>DATA EXTRACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot</code></td>
<td><code>extractObjectiveMeasures</code></td>
</tr>
<tr>
<td><code>chart.Concentration</code></td>
<td><code>extractStats</code></td>
</tr>
<tr>
<td><code>chart.EfficientFrontier</code></td>
<td><code>extractWeights</code></td>
</tr>
<tr>
<td><code>chart.RiskReward</code></td>
<td><code>print</code></td>
</tr>
<tr>
<td><code>chart.RiskBudget</code></td>
<td><code>summary</code></td>
</tr>
<tr>
<td><code>chart.Weights</code></td>
<td></td>
</tr>
</tbody>
</table>
Stock Data Setup

Here we will look at portfolio optimization in the context of stocks.

- Selection of large cap, mid cap, and small cap stocks from CRSP data
- Weekly data from 1/7/1997 to 12/28/2010
- 15 Large Cap
- 15 Mid Cap
- 5 Small Cap

```r
equity.data <- cbind(largecap_weekly[,1:15],
                     midcap_weekly[,1:15],
                     smallcap_weekly[,1:5])
```
Distribution of Monthly Returns
Example 1: Market Neutral Portfolio

Here we consider a portfolio of stocks. Our objective is to maximize portfolio return with a target of 0.0015 and minimize portfolio StdDev with a target of 0.02 subject to dollar neutral, beta, box, and position limit constraints.
Specify Portfolio: Constraints

```r
portf.dn <- portfolio.spec(stocks)

# Add constraint such that the portfolio weights sum to 0*
portf.dn <- add.constraint(portf.dn, type="weight_sum",
                           min_sum=-0.01, max_sum=0.01)

# Add box constraint such that no asset can have a weight of greater than
# 20% or less than -20%
portf.dn <- add.constraint(portf.dn, type="box", min=-0.2, max=0.2)

# Add constraint such that we have at most 20 positions
portf.dn <- add.constraint(portf.dn, type="position_limit", max_pos=20)

# Add constraint such that the portfolio beta is between -0.25 and 0.25
betas <- t(CAPM.beta(equity.data, market, Rf))
portf.dn <- add.constraint(portf.dn, type="factor_exposure", B=betas,
                           lower=-0.25, upper=0.25)
```
Specify Portfolio: Objectives

Add objective to maximize portfolio return with a target of 0.0015
portf.dn.StdDev <- add.objective(portf.dn, type="return", name="mean",
 target=0.0015)

Add objective to minimize portfolio StdDev with a target of 0.02
portf.dn.StdDev <- add.objective(portf.dn.StdDev, type="risk", name="StdDev",
 target=0.02)
Run Optimization

Generate random portfolios
rp <- random_portfolios(portf.dn, 10000, "sample")

Run the optimization
opt.dn <- optimize.portfolio(equity.data, portf.dn.StdDev,
 optimize_method="random", rp=rp,
 trace=TRUE)
plot(optim.dn, main="Dollar Neutral Portfolio", risk.col="StdDev", neighbors=10)
EDHEC Data Setup

Here we will look at portfolio optimization in the context of portfolio of hedge funds.

- EDHEC-Risk Alternative Indexes monthly returns from 1/31/1997 to 1/31/2014

<table>
<thead>
<tr>
<th>RELATIVE VALUE</th>
<th>DIRECTIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convertible Arbitrage (CA)</td>
<td>CTA Global (CTAG)</td>
</tr>
<tr>
<td>Equity Market Neutral (EMN)</td>
<td>Emerging Markets (EM)</td>
</tr>
<tr>
<td>Fixed Income Arbitrage (FIA)</td>
<td>Global Macro (GM)</td>
</tr>
</tbody>
</table>

Abreviate column names for convenience and plotting
colnames(R) <- c("CA", "EMN", "FIA", "CTAG", "EM", "GM")
Monthly Returns

Relative Value

Directional
Example 2: Minimum Expected Shortfall

Consider an allocation to hedge funds using the EDHEC-Risk Alternative Index as a proxy. This will be an extended example starting with an objective to minimize modified expected shortfall, then add risk budget percent contribution limit, and finally add equal risk contribution limit.

- Minimize Modified Expected Shortfall
- Minimize Modified Expected Shortfall with Risk Budget Limit
- Minimize Modified Expected Shortfall with Equal Risk Contribution
Specify Initial Portfolio

```r
# Specify an initial portfolio
funds <- colnames(R)
portf.init <- portfolio.spec(funds)

# Add constraint such that the weights sum to 1*
portf.init <- add.constraint(portf.init, type="weight_sum",
                          min_sum=0.99, max_sum=1.01)

# Add box constraint such that no asset can have a weight of greater than
# 40% or less than 5%
portf.init <- add.constraint(portf.init, type="box",
                          min=0.05, max=0.4)

# Add return objective with multiplier=0 such that the portfolio mean
# return is calculated, but does not impact optimization
portf.init <- add.objective(portf.init, type="return",
                          name="mean", multiplier=0)
```
Add Objectives

Add objective to minimize expected shortfall
portf.minES <- add.objective(portf.init, type="risk", name="ES")

Add objective to set upper bound on percentage component contribution
portf.minES.RB <- add.objective(portf.minES, type="risk_budget",
 name="ES", max_prisk=0.3)

Relax box constraints
portf.minES.RB$constraints[[2]]$max <- rep(1, ncol(R))

Add objective to minimize concentration of modified ES # component contribution
portf.minES.EqRB <- add.objective(portf.minES, type="risk_budget",
 name="ES", min_concentration=TRUE)

Relax box constraints
portf.minES.EqRB <- add.constraint(portf.minES.EqRB, type="box",
 min=0.05, max=1, indexnum=2)
Combine the 3 portfolios
portf <- combine.portfolios(list(minES=portf.minES,
 minES.RB=portf.minES.RB,
 minES.EqRB=portf.minES.EqRB))

Run the optimization
opt.minES <- optimize.portfolio(R, portf, optimize_method="DEoptim",
 search_size=5000, trace=TRUE, traceDE=0)
Plot in Risk-Return Space
Chart Risk Budgets

Risk Budget Limit

Equal ES Component Contribution
Set Rebalancing Parameters and Run Backtest

```r
# Set rebalancing frequency
rebal.freq <- "quarters"

# Training Period
training <- 120

# Trailing Period
trailing <- 72

bt.opt.minES <- optimize.portfolio.rebalancing(R, portf,
    optimize_method="DEoptim",
    rebalance_on=rebal.freq,
    training_period=training,
    trailing_periods=trailing,
    search_size=5000,
    traceDE=0)
```
Min ES Risk Contributions and Weights Through Time
Min ES Risk Budget Limit Risk Contributions and Weights Through Time
Min ES Equal Component Contribution Risk Contributions and Weights Through Time
Min ES Equal Component Contribution Risk
Contributions and Weights (interactive!)

Percent Contribution to Risk

Weights
ret.bt.opt <- do.call(cbind, lapply(bt.opt.minES, function(x) summary(x)$portfolio_returns))
colnames(ret.bt.opt) <- c("min ES", "min ES RB", "min ES Eq RB")
Chart Performance

charts.PerformanceSummary(ret.bt.opt)
Example 3: Maximize CRRA

Consider an allocation to hedge funds using the EDHEC-Risk Alternative Index as a proxy. Our objective to maximize the fourth order expansion of the Constant Relative Risk Aversion (CRRA) expected utility function as in the Boudt paper and Martellini paper. We use the same data as Example 3.

\[
EU_\lambda(w) = \frac{\lambda}{2} m(2)(w) + \frac{\lambda(\lambda + 1)}{6} m(3)(w) - \frac{\lambda(\lambda + 1)(\lambda + 2)}{24} m(4)(w)
\]
Define a function to compute CRRA

CRRA <- function(R, weights, lambda, sigma, m3, m4){
 weights <- matrix(weights, ncol=1)
 M2.w <- t(weights) %*% sigma %*% weights
 M3.w <- t(weights) %*% m3 %*% (weights %x% weights)
 M4.w <- t(weights) %*% m4 %*% (weights %x% weights %x% weights)
 term1 <- (1/2) * lambda * M2.w
 term2 <- (1/6) * lambda * (lambda + 1) * M3.w
 term3 <- (1/24) * lambda * (lambda + 1) * (lambda + 2) * M4.w
 out <- -term1 + term2 - term3
 out
}
Define a custom moment function

The default function for `momentFUN` is `set.portfolio.moments`. We need to write our own function to estimate the moments for our objective function.

crra.moments <- function(R, ...) {
 out <- list()
 out$mu <- colMeans(R)
 out$sigma <- cov(R)
 out$m3 <- PerformanceAnalytics::M3.MM(R)
 out$m4 <- PerformanceAnalytics::M4.MM(R)
 out
}

Specify portfolio
portf.crra <- portfolio.spec(funds)

Add constraint such that the weights sum to 1
portf.crra <- add.constraint(portf.crra, type="weight_sum",
 min_sum=0.99, max_sum=1.01)

Add box constraint such that no asset can have a weight of greater than
40% or less than 5%
portf.crra <- add.constraint(portf.crra, type="box",
 min=0.05, max=0.4)

Add objective to maximize CRRA
portf.crra <- add.objective(portf.crra, type="return",
 name="CRRA", arguments=list(lambda=10))
"Dummy" Objectives

```r
# Dummy objectives for plotting and/or further analysis
portf.crra <- add.objective(portf.crra, type="return", name="mean", multiplier=0)
portf.crra <- add.objective(portf.crra, type="risk", name="ES", multiplier=0)
portf.crra <- add.objective(portf.crra, type="risk", name="StdDev", multiplier=0)
```
Run Optimization

```r
opt.crra <- optimize.portfolio(R, portf.crra, optimize_method="DEoptim",
                               search_size=5000, trace=TRUE, traceDE=0,
                               momentFUN="crra.moments")

head(extractStats(opt.crra), 4)

##              CRRA.CRRA     mean      ES  StdDev       out   w.CA  w.EMN
## .DE.portf.1 -0.0009786 0.005906 0.03407 0.01367 0.0009786 0.1667 0.1667
## .DE.portf.2 -0.0007585 0.005716 0.02532 0.01215 0.0007585 0.1560 0.3420
## .DE.portf.3 -0.0019451 0.006380 0.05068 0.01901 0.0019451 0.1180 0.1200
## .DE.portf.4 -0.0007816 0.005536 0.02591 0.01232 0.0007816 0.0900 0.1840
##              w.FIA w.CTAG   w.EM   w.GM
## .DE.portf.1 0.1667 0.1667 0.1667 0.1667
## .DE.portf.2 0.0560 0.2180 0.1280 0.0920
## .DE.portf.3 0.0880 0.1300 0.3900 0.1620
## .DE.portf.4 0.2800 0.2720 0.1160 0.0640
```
Chart Results

chart.RiskReward(opt.crra, risk.col = "ES")
chart.RiskReward(opt.crra, risk.col = "StdDev")
Run Backtest and Compute Returns

```r
bt.opt.crra <- optimize.portfolio.rebalancing(R, portf.crra,
    optimize_method="DEoptim",
    search_size=5000, trace=TRUE,
    traceDE=0,
    momentFUN="crra.moments",
    rebalance_on=rebal.freq,
    training_period=training,
    trailing_periods=trailing)

ret.crra <- summary(bt.opt.crra)$portfolio_returns
colnames(ret.crra) <- "CRA"
```
Chart Weights Through Time

chart.Weights(bt.opt.crra, main="CRRA Weights", col=bluemono)
chart.PerformanceSummary(cbind(ret.bt.opt, ret.crra),
 main=\"Optimization Performance\")
Conclusion

- Introduced the goals and summary of PortfolioAnalytics
- Demonstrated the flexibility through examples
- Exciting plans for GSOC 2014
 - Support for regime switching
 - Support for supervised learning
 - many more

Acknowledgements
Many thanks to...

- Google: funding for Google Summer of Code (GSoC)
- UW CF&RM Program: continued work on PortfolioAnalytics
- GSoC Mentors: Brian Peterson, Peter Carl, Doug Martin, and Guy Yollin
- R/Finance Committee
PortfolioAnalytics Links

PortfolioAnalytics is on R-Forge in the ReturnAnalytics project

- [PortfolioAnalytics](https://github.com/rossb34/PortfolioAnalytics)

Source code for the slides

- https://github.com/rossb34/PortfolioAnalyticsPresentation

and view it here

- http://rossb34.github.io/PortfolioAnalyticsPresentation/
Any Questions?
References and Useful Links

- ROI
- DEoptim
- pso
- GenSA
- PerformanceAnalytics
- Patrick Burns Random Portfolios
- W.T. Shaw Random Portfolios
- Martellini paper
- Boudt paper
- Shiny App